Incorporating context into recommender systems: an empirical comparison of context-based approaches

نویسندگان

  • Umberto Panniello
  • Michele Gorgoglione
چکیده

Recently, there has been growing interest in recommender systems (RSs) and particularly in context-aware RSs. Methods for generating context-aware recommendations were classified into the pre-filtering, post-filtering and contextual modeling approaches. This paper focuses on comparing the pre-filtering, the post-filtering, the contextual modeling and the un-contextual approaches and on identifying which method dominates the others and under which circumstances. Although some of these methods have been studied independently, no prior research compared the relative performance to determine which of them is better. This paper proposes an effective method of comparing the three methods to incorporate context and selecting the best alternatives. As a result, it provides analysts with a practical suggestion on how to pick a good approach in an effective manner to improve the performance of a context-aware recommender system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Context and Customer Behavior in Recommendation

The last few years have seen an increased interest in incorporating context within recommender systems. However, little empirical evidence has emerged to support the premise that context can actually improve recommendation accuracy. Indeed little agreement exists as to what represents the context of a user or indeed how such context should be used within a recommendation strategy. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Commerce Research

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012